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ABSTRACT  

 

Wireless sensor networks have gained popularity since remote water quality monitoring happens 

instantaneously with minimal human supervision, unlike in the current outdated manual methods. 

Therefore, this research focused on developing a real-time raw water quality monitoring system using 

wireless sensor networks. Four specific objectives started from LoRa technology studies for data 

transmission to sensor integration, deployment, and data analysis were pursued. The following 

methodology was adopted. First, experiments on LoRa technology connectivity and range evaluation 

for wireless sensor networks were conducted since LoRa technology performance varies with 

topographical features. This relied on the received signal strength indicator of signal transmission 

between an end device and the gateway. These studies were carried out at the Dedan Kimathi 

University of Technology. Secondly, the DFRobot Gravity Arduino turbidity sensor and the 

DFRobot's Gravity Analog pH sensor were integrated. During their calibration, significant 

consideration was given to obtaining linear responses, mitigating noise, high accuracy, and quality 

resolution. They are power-hungry, and therefore a mechanism to switch them off during times of no 

data sensing was developed; based on an H-Bridge motor control circuit. After that, the developed 

system was deployed at the Nyeri Water and Sanitation Company water quality treatment plant in the 

outskirts of Nyeri Town from the 4th of November 2020 for 60 days. The sensed data values of these 

parameters were relayed to a gateway by a wireless LoRaWAN transceiver installed at the plant. The 

gateway then forwarded the received data to The Things Network platform, interfaced with a Google 

Cloud Platform Console, containing an influx dB virtual machine database. A web-based application 

(Dash Plotly app) was deployed for real-time visualization of the acquired data. A total of 2,658 

records containing turbidity and pH were collected. A subset of 291 records was extracted and 

manually examined as the ground truth. This subset was also verified with a comparison of the data 

collected manually by the treatment plant technicians. Lastly, analyses based on machine learning 

anomaly detection algorithms were performed for the evaluation of each parameter. The techniques 

analyzed included the Local Outlier Factor, the Isolation Forest, the Extended Isolation Forest, and 

the Robust Random Cut Forest algorithms. The Local Outlier Factor was the easiest to use as long as 

optimum parameters were selected. With little or no training, it emerged as a powerful tool compared 

to the other three algorithms. The overall results demonstrated that a successful low-cost and real-

time water quality monitoring system was developed and deployed. The framework is more suitable 

for large-scale implementation to collect and analyze raw water quality data in water supply firms 

and water authorities. The developed water quality management system can be installed in multiple 

locations in water distribution networks to gather water quality data and compare sensor values in 

practical deployment. Moreover, more water quality sensors can be incorporated into the developed 

system, like temperature, for robustness. 
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CHAPTER ONE 

 INTRODUCTION 

Human activities have various effects on the environment. This has adversely affected human health 

in many ways [1]. Developing countries have been the most affected by the growth of numerous 

slums, poor sanitation, and post-mining effects. The collective impact leads to a deteriorating 

environment. Environmental monitoring programs and systems have, therefore, been established 

globally to promote ecological sustainability. For example, governments and international 

organizations have put in place air quality monitoring systems as a concerted effort to enhance 

environmental sustainability [2], [3]. Water quality monitoring systems have also been proposed [4], 

[5]. Another notable effort is animal tracking towards environmental sustainability [6], [7]. 

Interestingly, it has also been noted that monitoring earthquakes will improve the quality of the 

environment [8], [9]. This thesis focused on water quality systems. 

1.1  Background of the Study 

Freshwater management has faced severe challenges in many world economies. These challenges are 

due to escalating competition for freshwater from many quarters of the ecosystem and human 

activities. The overexploitation of freshwater has reduced its availability for agricultural uses. 

Consequently, poverty alleviation has become more difficult because agricultural development is a 

critical contributor to its reduction. Since water is an integral contributor to food security [10], the 

2002 World Summit on Sustainable Development focused on water management and its relation to 

the Millennium Development Goals (MDGs) [11]. The summit's consensus was that for water 

resource sustainability to be achieved, these resources should be exploited with care, bearing in mind 

their importance to future generations. The current exploitation trends and competition for water 

resources fail to guarantee that the envisioned sustainability will be achieved [11]. Therefore, all 

stakeholders were tasked to make rational decisions, projections, and plans to sustainably exploit and 
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manage water resources. It was agreed that a universally accepted approach must be employed at all 

levels of society if water management goals are achieved. 

Water Quality Management (WQM) between the 1960s and early 2000s depended on manual 

sampling and analysis of water. Researchers collected samples from water sources and tested them in 

laboratories. The main focus was on the strategies and particular methods of water analysis. In that 

framework, the network design was crucial. The researchers would define water quality parameters 

to be studied, the water sites to be sampled, and the water samples' rates [12]. In the early 2000s, new 

technology was integrated into WQM to remedy some limitations in the manual methods employed 

in the previous few decades. Notably, microelectronic mechanical sensors, fibre optics, laser 

technology, biosensors, among other sensors, revolutionized water quality analysis [13], [14]. These 

sensors identify various aspects of water quality in situ. 

Moreover, the advanced technology introduced water telemetry, which enhanced the acquisition of 

water quality data and accompanying monitoring procedures. Satellite technology also facilitated the 

acquisition of water images used to approximate different water quality parameters [14]. Lakes, 

rivers, springs, and seas, among other water bodies, could also be monitored using visualization 

architectures for water quality courtesy of modern technology [15]. All the advancements remedied 

the undoing of manual water sampling and analysis as they introduced automatic selection and 

monitoring points where water could be analyzed periodically [12], [14], [16], [17]. 

The introduction of Wireless Sensor Networks (WSNs) in the early 2000s further bolstered WQM 

due to improved communication systems. Their ease of operation has made them increasingly 

popular. These networks have promoted quick capture, transmission, and analysis of data relating to 

the environment. The application of WSNs in WQM procedures has lowered the sensing costs and 

increased the amount of data and sampling points analyzed at any particular moment. The WSNs also 

have an in-built capability to transfer data by utilizing low-power techniques. This capability 
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enhances the easy remote transmission of data from numerous data sensors and points. Therefore, the 

new technology is more appealing than the previous manual methods. 

1.2  Problem Statement 

Many parts of the world have continually faced challenges in sustaining the supply of safe drinking 

water. The challenges include inadequate resources and weak water systems that cannot promptly 

identify water contamination, leakages, and blockages. These operational failures are a result of 

insufficient planning, which excludes environmental considerations. Thus, the most affected regions 

are likely to incur severe water-related hazards. To solve some of these issues, technologically 

enhanced water management methods should be used to quickly identify and address system failures 

and minimize water-related problems, wastage, and losses.  

Whereas the local water quality treatment plants adopt the traditional manual lab-based water quality 

monitoring systems, the existing water quality management systems suffer several shortcomings. The 

traditional manual methods are outdated. Other than being costly, they can be timewasting and 

subjected to bias in terms of parameter monitoring. On the other hand, the newly developed systems 

based on wireless sensors have many setbacks, including a lot of power consumption, false anomaly 

detection, and inappropriate wireless technologies. The adopted technologies are understood to have 

constraints of coverage and connectivity range, let alone improper anomaly detection methods! 

Therefore, this research focused on developing a real-time and low-cost water quality monitoring 

system based on wireless sensor networks and a more easy-to-use technology curbing the 

disadvantages of the strength of connectivity, power usage, and range of coverage. Additionally, an 

effective machine-learning anomaly detection algorithm was determined to minimize the issues of 

false alarms in the event of water contamination. 
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1.3  Objectives 

1.3.1 Main Objective 

To develop and implement a real-time water quality monitoring system based on wireless sensor 

networks. 

1.3.2 Specific Objectives 

i. To determine the range of coverage and the strength of connectivity for Long-Range (LoRa) 

technology in a rural setup surrounding DeKUT. 

ii. To calibrate and integrate the pH and the turbidity sensors to be used in the sensor node. 

iii. To design and fabricate a sensor node to be deployed for water quality parameter collection 

and transmission.  

iv. To determine an effective machine-learning analytical algorithm for real-time anomaly 

detection in the monitored parameters. 

1.4  Scope of the Study 

Among the many technological service providers of the low power wide area networks (LPWANs), 

this study was limited to LoRa technology alone; and therefore, the LoRa connectivity and range of 

coverage studies. Consequently, since the performance of this wireless communication technology 

has varied performance in different topographies, a rural setup area of the Dedan Kimathi University 

of Technology (DeKUT) was chosen as the area of study. 

The developed system was also limited to the section of raw water quality monitoring of the 

parameters for the treatment procedures: turbidity and pH. These studies were carried out at the Nyeri 

Water and Sanitation Company (NYEWASCO) raw water section. They were willing to share their 

data to verify the parameters collected with the developed system in this study. 

1.5  Outline of the Research 

This thesis is organized into five main chapters with their corresponding subsections. Chapter one 
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provides the background to the research study and ends up setting out the aims and objectives of this 

study. Chapter two deals with the literature review describing the overview of water quality 

monitoring systems. It also describes various sections encompassing a water quality monitoring 

system and compares the multiple approaches to wireless sensor networks. Chapter three describes 

the methodology of developing the water quality monitoring system. This starts with LoRa 

technology studies, water quality sensors calibration, experimental set-ups, computations, sensor 

node deployment, and anomaly detection algorithms evaluation. Chapter four covers the results, 

analysis, and discussions of the developed water quality monitoring system. Finally, chapter five 

gives conclusions and recommendations based on the results obtained. 

1.6  Contributions of this Research 

Based on the technical characteristics of wireless sensor networks, one of the main contributions was 

to develop a water quality monitoring system based on LoRa technology, a low power, long-range 

wireless transmission technology. This led to LoRa technology studies in the Dedan Kimathi 

University of Technology to determine its connectivity. From the results obtained, this technology 

addressed the challenges of connectivity and range of coverage. 

Moreover, there was a determination of an effective anomaly detection algorithm for time-series 

water quality parameters. The techniques analyzed included the Local Outlier Factor, the Isolation 

Forest, the Extended Isolation Forest, and the Robust Random Cut Forest algorithms. The Local 

Outlier Factor was determined to be easier to use as long optimum parameters are selected. With little 

or no training, it is a powerful tool for anomaly detection of water quality data compared to the other 

three analyzed. 



6 

 

 

CHAPTER TWO 

 

 LITERATURE REVIEW 

 

Amongst the several environmental quality monitoring systems, water quality management is a 

crucial consideration in the sector. It is investable since water is a precious commodity to the 

sustenance of standard environmental quality. This chapter defines and discusses water quality 

systems and emerging technologies, while the vital intention was to identify the research gap.  

2.1  Water Quality Parameters 

The water condition in terms of chemical, physical and biological characteristics, usually concerning 

its suitability for a particular purpose (i.e., drinking, swimming, fishing, etc.), is described using water 

quality [18]. The presence of substances such as pesticides or fertilizers in specific concentrations 

impacts water quality, thereby negatively affecting marine life. A measure of water quality is provided 

by factors such as concentration of dissolved oxygen (DO); levels of fecal coliform bacteria from 

human and animal wastes; concentrations of plant nutrients, nitrogen, and phosphorus; the amount of 

particulate matter suspended in the water (turbidity); and amount of salt (salinity). The concentration 

of chlorophyll-a, a green pigment found in microscopic algae, is also filtered from water samples to 

measure the microalgae living in the water column in many bodies of water [19]. Moreover, 

determining water quality may be possible by measuring quantities of pesticides, herbicides, heavy 

metals, and other impurities. 

Water quality can be classified into raw and treated parameters [20]. Whereas the raw water quality 

parameters determine the treatment procedures, the treated water quality parameters assess the safety 

of use in river flow maintenance, drinking, industrial water supply, water recreation, irrigation, and 

many other services, including being safely returned to the environment. This research discusses the 

main parameters of raw water: Turbidity and pH. 
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2.1.1 Turbidity 

The level of cloudiness of water caused by suspended particles is measured. Turbidity is obtained 

using the ISO 7027 approach, where infrared light scatters at right angles to cross beams [21]. It is 

indicated in Nephelometric Turbidity Units (NTUs). Turbid waters are susceptible to escalated 

growth of microbes as they provide sufficient food and shelter for pathogens. A turbidity sensor 

measures transmittance and scattering rate, which varies with the total solids suspended (TSS). 

2.1.2 pH 

The pH of water is indicated by use a negative logarithm of the concentration of hydrogen ions in 

moles per liter. It shows the acidic or basic levels.  Despite that requirement, the pH does not cause 

any health complications [22]. If the pH of water suddenly changes by a minimum of 0.5 pH units, 

there is a reason to suspect contamination. During the measurement of pH, a combined pH electrode 

is utilized to ensure accuracy. 

2.2  Water Quality Management 

Water quality management is defined as the idea of water constituents and conditions being sampled 

and analyzed. The monitored elements include naturally occurring ones (such as nutrients, oxygen 

and bacteria) that remain unaffected by human resources, and pollutants including metals, oil, and 

pesticides [23]. The extent to which their effect is felt depends on factors including temperature and 

pH. For instance, the quality of dissolved oxygen that water can contain is determined by temperature, 

whereas the level of toxins in ammonia is determined by pH. 

Water quality has been monitored for several years by several groups ranging from researchers, 

volunteers, and professionals at the local and state levels. Until and up to the past decade, before the 

development and application of monitoring using biological protocols, water monitoring has been the 

fundamental way of establishing water pollution problems [24]. All the stakeholders in water quality 

management are currently focused on developing methods of uniting physical, chemical and 
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biological modes of monitoring for pre-eminent conditions of water quality. 

2.3  Conventional Water Treatment  

Water treatment for any particular use entails a conventional method of two screening stages: A raw 

water section (primary screening) and the treated water section (secondary) [25]. Preliminary 

screening entails two main parameters; turbidity and pH. On the other hand, secondary screening 

entails several parameters, including residual chlorine, oxygen reduction potential, and electrical 

conductivity.  

Primary screening determines the treatment process and, therefore, the most fundamental stage. The 

amount of treatment chemicals input for coagulation, flocculation, and sedimentation procedures is 

determined by the measurements obtained from these two parameters [25]. The process requires 

chemical knowledge of source water characteristics to ensure that a compelling coagulation mix is 

employed. Inappropriate coagulants make these treatment methods ineffective [26]. The most widely 

used coagulant is Aluminium Sulphate which is commonly called alum. 

2.4  Previous Works  

In the last two decades, various researchers have submitted that a WSN is the most suitable method 

for WQM [27], [28], [29], [30]. Online platforms have also been increasingly used to analyze data 

and automatically discern water quality-related problems in the past few years [12], [15], [31]. 

Research indicates that the WSNs method overcomes most of the limitations experienced in the 

traditional manual based in situ (TMIS) and traditional manual lab-based (TMLB) techniques. Unlike 

the traditional approaches, the WSNs method can replace outdated and expensive equipment with 

low-cost sensors. They eliminate the need to transport data samples to the laboratory, thereby saving 

time and reducing costs in the process.  The training of workers, collection of samples, data recording, 

and data analysis with the WSNs has proven cheaper when compared to the traditional WQM 

techniques [28], [32], [33]. Therefore, the WSNs method is currently preferred to its traditional 
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competitors.  

The WSNs can be designed to track the quality of water in freshwater sites. However, various aspects 

must be considered before its implementation, including; sensing abilities of the nodes, signal 

processing, network layout, and whether the sensors are likely to use acoustic or radio 

communication. The WSNs can be used to track the water quality parameters such as the pH, 

temperature, turbidity, and the level of dissolved oxygen in water [34], [35], [36]. For underwater 

tracking, acoustic communication is required for WQM. However, if the process involves surface 

monitoring, radio communication is the preferred mode. Exclusive examples of multi-sensor systems 

and embedded WSN systems include the SmartCoast [37] and the LakeNet [12]. Most of the current 

approaches based on WSNs relied on the Arduino UNO as the microcontroller and WiFi a mode of 

wireless data transmission as in the cases of Meghana et al. [38], and Chowdury et al. [39]. 

2.5  WSN-Based WQM Framework 

 

This segment briefly explains the WSNs framework. The diverse components that form the 

framework are discussed below to expound on the WSN-based WQM structure. Figure 2.1 illustrates 

the WSN structure as a unit. The unit is built by four components responsible for four primary 

operations: data acquisition, data filtering, data transfer, and ultimately, data analysis, information 

storage, and presentation. 

 

 Figure 2.1: A WSN structure unit components [12] 
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2.5.1 Data Acquisition 

 

Spatially distributed sensor nodes periodically collect data from different water samples. This is to 

increase the chances of getting accurate results from various locations [12]. The high frequency of 

the sensors makes it easy for the researchers to collect data for their WQM projects. 

2.5.2 Filtering/Processing 

In the filtering and processing component, every sample collected in the data acquisition stage is 

processed [12]. This phase calls for the application of particular computations and devices that are 

remotely capable of high-level operations. Filtering techniques are deployed to categorize different 

water quality parameters. 

2.5.3 Network Communication 

The WSN system focuses its attention on the structure of the communication network to which it 

applies. This framework has two network designs, which are remote and local communication. 

Remote communication involves transmitting data from the local station to remote stations for 

potential users to access it. Local communication involves data transfer from sensor nodes to base 

stations where it can be accessed. These local networks use ZigBee and WiFi, among other systems, 

to transmit data. On the other hand, remote networks can apply cellular communication such as LTE, 

GSM, and GPRS to facilitate the data transmission to the local monitoring stations. Sometimes the 

data may be transferred to the cloud instead of the local tracking stations. Many studies indicate that 

remote networks are preferred [12], [29], [30], [40], [41], [42].  

Communication modes such as GSM, WiMax, and LTE usually offer a coverage of approximately 

100 km. Such ranges are suitable for the remote tracking of water environments. ZigBee, WiFi Direct, 

and WiFi are ideal for local monitoring. Their coverage range is between 50m and 200m. 

2.5.4 Energy Management 

 

At the onset of the design of the WSN system for WQM, researchers focused on the power 
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consumption of devices used in the system and how it was managed. The primary objective was to 

create a system that is continuously operational without the continuous replacement of batteries. 

There are two approaches that researchers can use to enable continuous operation. The first one 

involves increasing the energy supplied to the nodes by using renewable energy such as wind, 

hydroelectric power (HEP), and radiofrequency radiation (RF). Secondly, duty cycling, wake-up 

radios, power control, and standard communication procedures require low data. Lasting WSN 

systems require energy harvesting to be successful. Many scholars have also suggested the use of 

hybrid systems of power storage which combine direct solar energy and the use of secondary batteries 

to sustainably power the WSN systems [29], [43], [44]. 

2.5.5 Data Processing, Storage, and Retrieval 

 

The WSNs model pipeline involves an analysis of data, storage, and communication. The system 

must involve extra computations, organization of data, and classification of data that the system has 

collected. The data can be stored offline, online, or in the cloud. Data presentation can be done 

through methods such as graphs and tables. There are several places for processing data collected 

using multiple sensor nodes [45]. They include local monitoring stations, wireless sensor nodes, and 

remote tracking stations. The algorithms deployed at every stage of data processing depend on the 

parameter of interest. Data is enabled, processed, and retrieved to be analyzed further. All analysis is 

geared towards the laid-out objectives of the water quality management system. 

2.6  Emerging and Trending Issues  

 

The preceding sections consider the various aspects of the WSN system of WQM, energy 

requirements, water quality measurement, network design, and the implementation of each element. 

Relevant current developments associated with the WSN framework have also been highlighted. 

Many scholars have proposed the WSN-based model as the most suitable approach for analyzing 

water quality. Even so, some areas of this approach require further study and trials [12]. Notably, the 
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system has to address issues that arise from different network architectures and their implementation. 

This research identifies that WSN can be exploited for its gains. The obstacles related to power 

management, computation of data, and transmission of the data are addressed in this research. 

2.6.1 Data Computation, Analysis, and Reporting 

 

Data calculation, analyses, and reporting of the results can be conducted at either base or remote 

stations. All these procedures can be automated [17]. Different quality aspects can be estimated at 

multiple points to determine if water has been contaminated. Notably, water testing algorithms that 

link numerous water testing qualities from different sections of the water source are yet to be 

designed. 

2.6.2 Data Communication and Transmission 

 

The discussion in this research reveals techniques used in already installed wireless technologies such 

as WiFi Direct, LTE, and ZigBee, among others [44]. LoRa technology has not been efficiently 

implemented in WSN platforms. Extensively implementing these communication technologies may 

benefit bandwidth and network coverage. For instance, if WSNs employ WiFi Direct, they gain more 

bandwidth and network coverage than ZigBee. Conversely, the ZigBee consumes lower power than 

WiFi-Direct and hence a trade-off between power consumption and benefits such as higher bandwidth 

and coverage. 

2.6.3 Energy Management 

 

The WSN-based frameworks consider energy as a vital resource in the determination of water quality. 

It is integral to the transfer of data from local tracking stations. Solar energy has proven to contain 

the most excellent density (15mW/cm2 on sunny days) compared with other energy sources [46]. 

Possible instances of power minimization are; the utilization of low power sensors, duty cycling, and 

scaling of voltages, and algorithms used to guide sleep times at specific levels [47].  
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2.7  The Intended Approach 

 

The telecommunication industry has long shown interest in low-power wide-area networks 

(LPWANs) [48]. Many technology service providers are competing to offer LPWAN services, 

including the LoRa Alliance [49]. They have standardization of costs, optimization of batteries, and 

coverage. They incur low rates of data transmission since they have low bandwidth and low power 

transmissions. WSNs have gained from standard procedures by vendors who have robust features all 

over the world [30]. This study, therefore, employed low-power sensors in tracking the progress of 

water quality using the LoRa technology. The technology addressed energy consumption, 

transmission, data reporting, and storage challenges in the existing WQMs. Moreover, data analysis 

and anomaly detection is handled with a more advanced approach of machine learning anomaly 

detection algorithms to eradicate the challenges of the current methods of anomaly detection: complex 

computations, false anomalies, too much computation time, among other loopholes. 

2.8  Overview of LoRa 

 

Long-range communication can be achieved in LoRa-LPWAN through the deployment of sub-

Gigahertz radio bands and limited network data rates that improve the sensitivity of receivers. This 

technique involves low power consumption [49]. Thus, there is the usage of devices powered by long-

lasting batteries. 

2.8.1 Long Range Wide Area Network (LoRaWAN) 

 

LoRaWAN describes the communication protocol and architecture used in LoRa communication 

while LoRa’s physical layer establishes the communication link in LoRa. The system's protocol and 

design determine the battery life of node batteries, network capacity, the number of network 

applications, and network security. 

2.8.2 LoRa Network Architecture 

“A star-of-stars topology” is a typical LoRa network with the inclusion of three diverse types of 
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devices [49], as shown in Figure 2.2.  Individual end-nodes in a mesh network forward information 

from other nodes. The aim is to widen the range of communication and the network’s cell size. When 

irrelevant information is received and forwarded by the nodes, the range is increased, the network's 

capacity is reduced, complexity is added, and the battery life is reduced. Thus, achieving long-range 

connectivity in the star architecture fosters a long battery life by enhancing battery preservation. The 

LoRa-WAN simple design described in the following sections elaborates on how LoRa-WAN uses 

gateways to communicate with end devices. Using Ethernet or 3G networks, the portals forward 

LoRa-WAN frames to network servers from the identified devices. The gateways are bidirectional, 

whereas the network server accounts for decoding the packets sent to and from the devices on the 

LoRa-WAN.  

 

Figure 2.2: LoRa Network Architecture [45] 

2.8.3 Parameters of the Physical Layer and Network Capacity 

The parameters of LoRa that can be modified to include LoRa harmonization encompasses the 

bandwidth (BW), code rate (CR), and the spreading factor (SF) [49]. The chirp rate determines the 

BW (one chirp/s/Hz of BW). The BW frequency is proportional to both the symbol and bit rates at a 

specific spreading factor. Therefore, if the BW is doubled, the transmission rate is also doubled. 
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Conversely, an increase in BW reduces the sensitivity of the receivers. Similarly, an increase in the 

spreading factor increases the receiver’s sensitivity. Table 2.1 below illustrates this. 

Table 0.1: Semtech LoRa Receiver Sensitivity in dBm at Different Bandwidths and Spreading 

Factors [48] 

                  SF 

BW 

7 8 9 10 11 12 

125kHz -123 -126 -129 -132 -133 -136 

250 kHz -120 -123 -125 -128 -130 -133 

500 kHz -116 -119 -122 -125 -128 -130 

 

2.8.4 Why LoRa Technology 

 

The LoRa technology has several merits for the WSN-based WQM system. First, it is highly 

compatible with 868 MHz ISM bands that are accessible globally. Second, it offers a wide range of 

coverage, approximately 5 km and 15km in rural and urban areas, respectively. Third, a single LoRa 

gateway base station can serve thousands of other nodes and devices, contributing to the system's 

reliability. Given the simple design that it entails, the technology can be easily deployed. Fourth, the 

technology utilizes little power, thus enhancing longer battery life. Moreover, LoRa facilitates battery 

life prolongation since it uses adaptive data rates when varying output rates for its devices. 

2.9  Anomaly Detection and Machine Learning 

 

2.9.1 Anomalies 

 

Data subsets that are considerably different from the rest of the data set are known as anomalies, 

outliers, noise, or novelties [50]. They usually happen due to measurement variability or some 

measurement errors often excluded from the data set. Other causes of anomalies include hardware 

transient malfunction experiences, data transmission errors, system behavior changes, human impacts 

or fraudulent behaviors, instrument errors, among many different reasons [15]. They can cause 
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complications in data analysis and, consequently, wrong decisions. In regards to water quality 

management systems, ecological phenomena like rainfall or floods are expected, affecting water 

quality. Anomalies may also arise from human and technical errors: Sensor probes are dirty or pulled 

out of water for cleaning. 

Anomalies can be classified into three: Global or point anomalies, an individual data point far from 

others in a subset. If a data instance is strange in a specific context, but not otherwise, then it is called 

a contextual or a conditional anomaly. And finally, collective anomalies, which are a collection of 

data instances in a given subset. These are illustrated in Figure 2.3 below. The process of finding out 

patterns in data that do not imitate the expected performance or trend is referred to as anomaly 

detection or outlier detection [50]. 

 

Figure 2.3: Types of anomalies [50] 
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2.9.2 Machine Learning Algorithms 

 

Machine learning originated from pattern recognition and is a data analysis technique that explicitly 

gives computers the capability to learn minus any program [39]. Algorithms that can learn from data, 

identify patterns and make decisions are explored, examined, and developed. The main classes of 

machine learning algorithms include supervised, unsupervised or semi-supervised learning [51]. 

Labeled data for training is required in supervised learning, while unsupervised learning does not 

entail desired classified or labeled test data. Its algorithms can infer a function to describe hidden data 

structures from unclassified test data short of any guidance. On the other hand, semi-supervised 

learning lies between supervised and unsupervised learning [51]. These are illustrated in Figure 2.4 

below. 

  

 
Figure 2.4: Machine learning algorithms categories: a) Supervised learning, b) Unsupervised 

learning [51] 

2.9.3 Anomaly Detection Algorithms 

 

The most popular anomaly detection techniques are shown in Figure 2.5. A brief overview is given 
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in this section, followed by a deep discussion of the four methods used in this research. 

 
Figure 2.5: Anomaly detection techniques 

 

Local density gives a base for nearest neighbors anomaly detection techniques built on the k-nearest 

neighbors algorithm. Clustering-based anomaly detection is unsupervised learning. There is an 

assumption by these algorithms that similar objects tend to belong to similar groups (clusters) and 

that distance determines the similarity. The classification technique does the categorization of data 

into different classes with labels. Anomaly detection involves only two distinct classes: normal class 

and abnormal class. Random forests is the learning algorithm that functions by constructing decision 

trees' multitude at training time and class outputting (i.e., class mode-classification; prediction of 

mean-regression). This algorithm classifies and regresses individual trees. [50]. 

The Isolation Forest (IF), the Extended Isolation Forest (EIF), the Local Outlier Factor (LOF), and 

the Robust Random Cut Forest (RRCF) algorithms were chosen because: 

 Time series data with only one variable, such as water quality data, is not suitable for 

clustering, supervised learning algorithms. 
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 There is a requirement of model training and labeled data for neural networks and support 

vector machine (SVM) classification-based algorithms.  

 Training a generic model for classification is complex and different results for the same data 

point may be generated by other models. 

 LOF is based on K-NN, and extensions of LOF are other nearest neighbors-based algorithms. 

 And, in general, low computational complexity.  

I. Local Outlier Factor 

 

The local outlier factor (LOF) is the unsupervised outlier detection algorithm that detects the outliers 

by comparing the local density of the data instance with its neighbors is called the local outlier factor 

(LOF). It was the first algorithm based on k-neighborhood and local density [50]. LOF is the anomaly 

score of each sample in the training data set, and it indicates the degree of its outlier-ness, as shown 

in figure 2.6. 

 
Figure 2.6: Local Outlier Factor (LOF) degree of outlier-ness 

 

Determination of the local neighborhood of the LOF is based on the number of nearest neighbors. 

For the LOF to accomplish the whole process, the following definitions are used. The k-distance of 

instance p, denoted as k-distance (p), is defined as the distance 𝑑 (𝑝, 𝑜) between p and an object 𝑜 ∈

𝐷 so that for at least k instances 𝑜′ ∈ 𝐷\{𝑝} it holds that 𝑑(𝑝, 𝑜′)  ≤  𝑑(𝑝, 𝑜), and for at most 𝑘 −  1 
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instance 𝑜′ ∈ 𝐷\{𝑝} it holds that 𝑑(𝑝, 𝑜′) < 𝑑(𝑝, 𝑜). The k-distance neighborhood of instance 𝑝 is a 

subset with instances whose distances are not greater than the 𝑘-distance from it. With regard to 

instance 𝑜, the definition of reachability distance of instance p is: 

𝑟𝑒𝑎𝑐ℎ − 𝑑𝑖𝑠𝑡𝑘 = 𝑚𝑎𝑥 {𝑘 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑜), 𝑑(𝑝, 𝑜)}    2.1 

Figure 2.7 shows examples of reachability distance for 𝑘 =  4. Between these two instances, the 

reachability distance is their actual distance when they are far away from each other actual distance 

(like 𝑜 and  𝑝2 ); but, the reachability distance is  𝑘 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 of 𝑜 if they are close enough (like 

𝑜 and  𝑝1 ). Consequently, there can be a significant reduction of the statistical fluctuations of 𝑑(𝑝, 𝑜) 

for all of the 𝑝’𝑠 close to 𝑜. The parameter k controls the strength of this smoothing effect; therefore, 

the higher the value of k, the more the reachability distances similarities are within the same 

neighborhood [52]. 

 

Figure 2.7: Example of reachability distance for k=4 [52] 

For object 𝑜 ∈ 𝑁𝑀𝑖𝑛𝑃𝑡𝑠(𝑝), the local reachability density of point p is defined as: 

𝑙𝑟𝑑𝑀𝑖𝑛𝑃𝑡𝑠(𝑝) = 1/(
∑𝑜∈𝑁𝑀𝑖𝑛𝑃𝑡𝑠(𝑝)𝑟𝑒𝑎𝑐ℎ−𝑑𝑖𝑠𝑡𝑀𝑖𝑛𝑃𝑡𝑠(𝑝,𝑜)

|𝑁𝑀𝑖𝑛𝑃𝑡𝑠(𝑝)|
)  2.2 

Where; 

 𝑀𝑖𝑛𝑃𝑡𝑠 specifies a minimum number of objects 
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 𝑟𝑒𝑎𝑐ℎ−𝑑𝑖𝑠𝑡𝑀𝑖𝑛𝑃𝑡𝑠(𝑝,𝑜) represents the reachability distance of object p with respect to 

object o  

For object 𝑜 ∈ 𝑁𝑀𝑖𝑛𝑃𝑡𝑠(𝑝), the definition of (local) outlier factor of p is: 

𝐿𝑂𝐹𝑀𝑖𝑛𝑃𝑡𝑠(𝑝) = 1/(
∑𝑜∈𝑁𝑀𝑖𝑛𝑃𝑡𝑠(𝑝)

𝑙𝑟𝑑𝑀𝑖𝑛𝑃𝑡𝑠(0)

𝑙𝑟𝑑𝑀𝑖𝑛𝑃𝑡𝑠(𝑝)

|𝑁𝑀𝑖𝑛𝑃𝑡𝑠(𝑝)|
)   2.3 

Where, 

  𝑙𝑟𝑑𝑀𝑖𝑛𝑃𝑡𝑠(𝑝) is the local reachability density of p 

  𝑙𝑟𝑑𝑀𝑖𝑛𝑃𝑡𝑠(𝑜)  represents the local reachability density of p’s 𝑀𝑖𝑛𝑃𝑡𝑠 -nearest neighbors 

For a given dataset, the following five calculations are obtained in the order outlined below:  

i. The distances between every two instances. 

ii. The distances between the 𝑘𝑡ℎ nearest neighbors to 𝑝. 

iii. All the k-nearest neighbors of p. 

iv. The reachability density (𝑙𝑟𝑑) of 𝑝. 

v. The LOFs (anomalies) of 𝑝. 

II. Isolation Forest 

 

Isolation Forest (IF) used in this research refers to an unsupervised algorithm that can identify the 

presence of outliers in a dataset [53]. The algorithm was designed to detect anomalies depending on 

their isolation. Besides, the IF analyzes mobile time series data to identify change points and outliers. 

The algorithm uses standard data-specific anomalies and a few anomalies in each dataset as 

quantitative attributes detecting outliers. 

The IF algorithm begins with data training that includes tree diagrams construction [54]. First, an N-

dimension dataset leads to a random subsample that constructs a binary tree. During the process, 

branching happens by selecting the dimension 𝑥𝑖 randomly where 𝑖 ∈  {1, 2, . . . , 𝑁}. Then, the 
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algorithm selects another random value v from the range of random values. If the specific data point 

has a smaller value than v for the stated dimension, the point is branched leftwards. If it exceeds v, 

the point is branched rightwards in the tree. The tree is split twice on the current node using a similar 

procedure. The recursive branching process continues until a single data point is isolated or a specific 

depth limit is achieved. The process is repeated to construct another random tree for another sub-

sample. A large ensemble of trees is created to complete a process that is collectively termed as forest 

training. The process moves onto the scoring step, where the algorithm runs a candidate data point 

chosen from the trees through all the trees. An anomaly score is given to each data point depending 

on the depth reached by each candidate data point on the tree, as illustrated in figure 2.8. A radial line 

represents each tree in the model: red represents an outlier, whereas the blue radial line represents a 

nominal point [54].  

 

Figure 2.8: The schematic diagram of a single tree (a), and the forest (b) [54] 

Every occurrence x in the anomaly detection is assigned an outlier score s useful in analysis. The 

outlier score s and occurrence x can be formulated as: 

𝑠(𝑥, 𝑛) = 2
−

𝐸(ℎ(𝑥))

𝑐(𝑛)     2.4 

Where, 𝐸(ℎ(𝑥) represents the depth mean-value every datapoint x reaches in every tree and 𝑐(𝑛) 
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represents the normalizing factor (mean depth for Binary Search Tree (BST) searches that are not 

successful) [54].  

𝑐(𝑛) = 2𝐻(𝑛 − 1) − (
2(𝑛−1)

𝑛
)  2.5 

Where 𝐻 (𝑖), in this case, represents the harmonic number 𝑙𝑛(𝑖)  +  0.5772156649 (Euler’s 

constant) and n is the total number of change points used in building the trees [53]. 

Figure 2.9 (a) below represents the anomalous datapoint branching process where branching occurs 

until the point in question (red point) is isolated. Three random cuts were used to arrive at the desired 

isolation point. In Figure 2.9 (b), the branching process for a nominal is illustrated. The branching 

process requires multiple cuts to identify and isolate the point since it sits deep in the initial dataset. 

The tree depth limit is achieved before the point is reached. The line numbers in the figure 

demonstrate the order of the branching process. 

 

Figure 2.9: Branching process for an anomalous data (a) and a nominal point (b) [54] 

The IF Algorithm utilizes two input parameters: ψ (sub-sample size) and t representing the number 

of trees. In this context, ψ determines the data size used for training. Three algorithm procedures are 

used to determine the anomaly score: Algorithm 1 [53], Algorithm 2 [53], and Algorithm 3 [53] 

(Appendix I). 
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III. Extended Isolation Forest 

 

The Extended Isolation Forest (EIF) facilitates the improvement of anomaly score consistency and 

reliability. The EIF identifies various slopes for making branching cuts and then randomly assigns 

intercept values within the training dataset. This EIF phenomenon is different from the usual random 

attribute-random value method used by Isolation Forest (IF) [54], as discussed below. 

Figure 2.10 (a) below demonstrates the branching process of determining an outlier. As earlier stated, 

branching continues till the desired point is determined, and this process took three cuts to isolate the 

required point. Figure 2.10 (a) shows how the branching process is used to arrive at the nominal point. 

The point is nearly at the center of the dataset, and therefore, several random cuts are required to 

isolate it. However, the depth limit is achieved before the isolation of the point for this scenario. 

 

Figure 2.10: Branching in the EIF [54] 

In the normal IF algorithm, two types of information are necessary for branch cut to be achieved: the 

coordinates and the random value from the dataset. Conversely, the EIF branch cut needs two pieces 

of information: the random slope-intercept from the training dataset and the branch cut slope. 
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Choosing a random slope from a branch cut in an N-dimension dataset is like selecting a normal 

vector  𝑛⃗⃗⃗    uniformly per unit of an N-sphere. This can be achieved through drawing random numbers 

for every n-coordinate from a normal distribution Ɲ (0, 1) and uniform N-sphere selection points are 

reached as a result. The  𝑝⃗⃗⃗   intercept can be obtained from a uniform dataset used at each point of 

branching [54]. When the two types of information are received, the branching process for splitting 

data for a particular point x proceeds as follows: 

(𝑥 − 𝑝 ) . �⃗� ≤ 0   2.6 

The data point 𝑥   is passed to the left branch of the process if the condition is achieved. However, it 

is passed to the correct branch if that condition is not fulfilled. Then, Algorithm 2 [53] becomes 

Algorithm 4 [54] (Appendix I). 

IV. Robust Random Cut Forest 

 

This is an unsupervised algorithm for anomaly detection on streaming data proposed in 2016 [55]. 

Developing the machine learning model is done using current records in the stream. Neither older 

records nor statistics from previous executions are used by the Robust Random Cut Forest (RRCF). 

The standard procedure of anomaly detection using RRCF is as follows: 

i. A bunch of random instances is taken by RRCF (Random). 

ii. It then cuts them into the same number of instances and creates trees (Cut). 

iii. Finally, all trees together are considered by determining whether a particular instance is an 

anomaly (Forest). 

A Robust Random Cut Tree (RRCT) on point set S is generated as follows: 

i. A random dimension proportional to 
𝑙𝑖

∑ 𝑙𝑗𝑖
 where 𝑙𝑖 = 𝑚𝑎𝑥𝑥∈𝑆 𝑥𝑖 − 𝑚𝑖𝑛𝑥∈𝑆 𝑥𝑖  is chosen. 

ii. Choose 𝑋𝑖~𝑈𝑛𝑖𝑓𝑜𝑟𝑚⌈𝑚𝑖𝑛𝑥∈𝑆 𝑥𝑖  , 𝑚𝑎𝑥𝑥∈𝑆 𝑥𝑖⌉ 

iii. Let 𝑆1 = {𝑥|𝑥 ∈ 𝑆, 𝑥𝑖 ≤ 𝑋𝑖}, 𝑆2 = 𝑆/𝑆1 and recurse on S1 and S2  
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Figure 2.8 shows how RRCF cut instance happens into pieces recursively. When each point is 

isolated, the cutting is stopped.  

 

Figure 2.11: Random Cut Tree [55] 

Deletion (ForgetPoint Algorithm 5) [55] and insertion (ForgetPoint Algorithm 6) [55] operations 

(Appendix I) can be used to dynamically maintain robust random cut trees when anomalies on data 

are detected using RRCF.  For deletion: If T were drawn from the distribution 𝑅𝑅𝐶𝐹 (𝑆) then the 

ForgetPoint algorithm produces a tree 𝑇′ which is drawn at random from the probability 

distribution 𝑅𝑅𝐶𝐹 (𝑆 − {𝑝}). On the other hand, for insertion: Given T drawn from distribution 

𝑅𝑅𝐶𝐹 (𝑆) and 𝑝 ∈  𝑆 produce a 𝑇′ drawn from 𝑅𝑅𝐶𝐹 (𝑆 ∪ 𝑝), the InsertPoint algorithm is used.  

2.10  The Research Gap 

 

The extensive literature indicates that the current water quality monitoring methods are based on 

outdated procedures. These include traditional manual lab-based methods that are time costly and 

prone to data alteration or interference during packaging and transfer of the samples. Similarly, the 
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traditional manual in-situ procedures aren’t better off. Therefore, evolving the current water quality 

monitoring methods is inevitable. 

Wireless sensor networks (WSNs) have gained popularity in the current industry as pertains to the 

Internet of Things (IoT), including the application in water quality management. However, the choice 

of a wireless transmission technology has posed a challenge in terms of several aspects, including 

power consumption, the ease of use, the cost of acquisition, the distance of coverage, and the amount 

of data transmitted, among many other factors. 

Real-time anomaly detection on time-series data has also made the utilization of advanced machine-

learning (ML) algorithms possible. Many current anomaly detection algorithms exist for various 

applications, and a lot has not been done regarding water quality parameters. Some of them have false 

anomaly detection, very high computation complexity, and too much processing time. Therefore, 

there is a need to determine an effective algorithm regarding water quality contamination event 

detection.  
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CHAPTER THREE 

 

RESEARCH METHODOLOGY 

 

This chapter describes the design of a WQM system using WSNs. The system design followed four 

major phases outlined below. 

i. LoRa connectivity and range evaluation. 

ii. Sensors calibration and integration with the system. 

iii. General system designing, fabrication, testing, and deployment. 

iv. Anomaly detection algorithm determination. 

 

3.1  LoRa Connectivity and Range Evaluation 

3.1.1 Statement of Purpose 

An experimental evaluation of the proprietary parts of LoRa Technology was conducted to ascertain 

if LoRa performs as advertised. This procedure’s aims were two-fold: To conduct performance 

experiments on LoRa connectivity and range evaluation for wireless sensor networks and present and 

discuss the results obtained for purposes of the developed WQM system. The experiments relied on 

the received signal strength indication (RSSI); which refers to the signal power received in dBm. 

How clear a receiver can “hear” from a sender can be measured using this value. The value range of 

typical LoRa RSSI is -120 dBm to -30dBm. 

3.1.2 Measurement Setup 

The outlined parameters were measured at the Dedan Kimathi University of Technology, Kenya, at 

different times throughout the day over several days. The university is located in a rural area, and the 

highest residential buildings are four (4) floors high. The site has an irregular terrain, with notable 

differences in geographical elevation. The base station remained stationary all through the 

measurements. End devices that sent payloads periodically to the base station were deployed at 
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different locations away from the base station. These locations were 100m apart, at a 1km path range 

along a line of sight (LoS) from a 2.5m stand node, as shown in Figure 3.1. For every transmitted 

payload, there was a measure of the received signal strength (RSSI) used in the connectivity and range 

of evaluation studies herein. 

 
 

Figure 3.1: Test points geographical locations. [Extracted from Google Maps] 

 

I. Base Station 

The configured and installed LoRaWAN industry gateway at the Dedan Kimathi University of 

Technology was used (Figure 3.2). The gateway's location is approximately 25 meters above the 

ground, on the roof of a centrally situated building (The Resource Center) at DeKUT. It is based on 

the MultiTech Conduit, a quickly deployable and programmable gateway. It is also intended for the 

internet of things (IoT). Moreover, it is suitable for both public and private LoRaWAN projects. 

Tables 3.1 and 3.2 summarize the specifications and operations of the gateway. 
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Figure 3.2: The LoRaWAN industry gateway (based on the MultiTech Conduit) 

 

Table 3.1: The LoRaWAN Industry Gateway Specifications (Subject To Environmental 

Factors and Placement of Nodes/Sensors and Gateways) 

Antenna LoRa Female SMA, Cell 2dBi 27dBm max output 

Connectivity Ethernet (RJ45) Optimal 3FF Micro SIM 

Enclosure Size (161 mm by 107mm by 42mm) Weight 1.45kg 

 

Table 3.2: The LoRaWAN Industry Gateway Operation (Subject To Environmental Factors 

and Placement of Nodes/Sensors and Gateways) 

Operating Temperature Min: -30 °C Max: +70 ℃ 

Communicating Range Line of sight(*Antenna): 20kms Urban: up to 3kms 

Installation Wall or Desktop mount Power 9V UK/EU 

 

II. End Device 

The end device was an STM32 Nucleo board (Figure 3.3) equipped with a LoRaWAN Transceiver 
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Shield. While taking the measurements, the nodes were powered by 3V batteries. The transmit power 

was +14 dBm at a frequency of 868MHz. The node was attached to a stand, approximately 2.5 m 

high from the ground level for on-ground measurements. Each device was registered on The Things 

Network (TTN) platform, which forwarded data to the database for storage after retrieving it from 

the device. The security of data transmission was ensured by TTN, which provides credentials for 

device authentication. Each node periodically transmitted a payload during measurements, including 

the received signal strength (RSSI) to the base station. Payloads were sent every 60 seconds for one 

hour in each test location. 

 
Figure 3.3: STM32 Nucleo board, equipped with a LoRaWAN transceiver shield 

3.2  Water Quality Parameters 

The parameters of turbidity and pH and their significance to water quality are described in the next 

section. Calibration techniques for the pH and turbidity sensors are also described. Significant 

consideration was given to obtaining linear responses, mitigating noise, and achieving high accuracy 

and quality resolution. A lab assessment (utilizing standard buffer solutions and reference 

instruments) was conducted at the NYEWASCO water treatment plant laboratory at Kamakwa, 

Nyeri. 
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3.2.1 Turbidity 

 

The DFRobot Gravity Arduino turbidity sensor (Figure 3.4) was used to detect the opaqueness levels 

of water. It utilized light to sense the suspended solid particles that affect the transmission and 

scattering of light. The sensor provided both analog and digital signal modes (with adjustable 

threshold), and it operates at a voltage of 5V DC and a maximum of 40 mA. A temperature range of 

between 5℃ and 90°C proves ideal for this sensor. Its response time is 500ms and has a resolution 

of 0.01V analog output voltage. 

 
 

Figure 3.4: The DFRobot Gravity Arduino turbidity sensor interfaced with Arduino UNO R3 

Board 

For its calibration, the primary aim was to get a voltage value from the sensor and transform it into 

turbidity information. The module was connected to the Arduino Uno R3 board using three pins only: 

VCC (data), GND (ground), and SIGNAL (data).  The sensor has both a light transmitter and a 

receiver. Where the waters are clear, the dispersion of light is recorded as the least while the recipient 

of light receives the most light. With more turbidity, the light receiver gets less light progressively. 

There is a switch (producing a hybrid of analog and digital signals) on the interface board, switching 
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between analog and digital modes. The official DFRobot's wiki notes that the sensor yields 

diminished values in analog mode. At the same time, its output goes high if the sensor is in digital 

mode, reaching the threshold that the onboard potentiometer has established. The analog mode is 

preferred to the digital mode in the measurement of the turbidity levels. The turbidity and voltage 

follow the following relationship; where TU is the turbidity and V is the voltage.   

𝑇𝑈 = 1120.4 ∗ 𝑉2 + 5742.3 ∗ 𝑉 − 4352.9   3.1 

Nevertheless, the equation described above is only suitable for the sensor if it produces 4.2 volts at 

zero turbidity (0 NTU). This sensor did not produce a voltage of 4.2 V, and thus, the sensor probe 

was opened, and the trimmer (Figure 3.5) tuned to obtain 4.2 V with the sensor afloat.  

 

Figure 3.5: The DFRobot Gravity Arduino turbidity sensor Trimmer 

After that, the voltage was converted into NTU. Despite that, the equation from the shown graph only 

applies when the voltage ranges between 2.5V and 4.2 V. To ascertain the provided equation, standard 

solutions (0, 20, 40, 100, 200, 1000, and 4000 NTUs) available at NYEWASCO water quality 

laboratory were used to carry out verification. Fifteen (15) trials were done for each standard solution. 

Consequently, there was a need to set limits as 1000 NTU for voltages below 2.5 V to be the sensor's 

highest possible NTU value attainable. This exercise was conducted on Wednesday, August 2020. At 
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the time of the study, the room thermometer showed a temperature of 22° C. Using a turbidimeter 

(Figure 3.6), that is calibrated by the Kenya Bureau of Standards (KEBS), as a primary instrument, 

the turbidity of these standard solutions was measured and the experiments repeated with this probe 

sensor. 

 

Figure 3.6: The KEBS calibrated turbidimeter 

3.2.2 pH 

The DFRobot’s Gravity Analog pH sensor to gauge the solution pH and mirror its acidic or basic was 

deployed for this framework (Figure 3.7). Its activity voltage ranges between 3.3 to 5.5V, with an 

accuracy of ±0.1 at 22℃; recognition scope of 0 to 14, and activity temperature range between 5 and 

60°C. Its response time is stipulated to be one minute and a resolution of 0.01. 
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Figure 3.7: DFRobot's Gravity Analog pH sensor interfaced with Arduino UNO R3 Module 

The manufacturer directs that there must be a two-point calibration, and as such, there should be two 

buffer solutions (4.0 and 7.0) to be used as the standard solutions.  Consequently, the two-point 

calibration followed the following guidelines; 

i. A calibration code was uploaded to the Arduino UNO R3 board, and the serial monitor opened 

on a laptop computer. 

ii. The probe was washed using distilled water, and allowed to dry. Then, the probe used to 

measure pH was put in a 7.0 buffer solution, stirred thoroughly until stable values were 

obtained. 

iii. Once the stable values were attained, the first point was marked using the ENTER instruction 

in the serial monitor on the computer to set it to calibration. 

iv. The calibration (CAL) instruction was used to calibrate more inputs in the serial monitor. The 

program then identified the buffer solution 7.0 to be present. 

v. The EXIT command was used to move out of the calibration mode. This command also 

allowed the data entered in the serial monitor to be saved. 
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The EXIT instruction marked the end of the calibration steps, and the first point calibration was over. 

The second-point calibration followed a similar pattern to the first-point calibration, but it used the 

4.0 buffer solution.  After that, the pH of three standard solutions (4, 7, and 9) was obtained using the 

KEBS calibrated pH meter alongside this sensor probe. Fifteen (15) trials were done for each standard 

solution. This exercise was conducted at the NYEWASCO water quality laboratory on Wednesday, 

August 2020, at a room temperature of 21℃, as depicted in Figure 3.8 for result validation purposes. 

 

Figure 3.8: KEBS Calibrated pH meter at NYEWASCO Water Quality Lab 

3.3  Sensor Node Designing and Fabrication 

 

Printed circuit boards (PCBs) play a very crucial role in the development of microcontroller systems. 

They easily allow circuits to be realized with the minimum number of connectors resulting in the 

optimization of the occupied space on a fabricated PCB. For this prototype, the STM32 Nucleo 

F466RE microcontroller was used. The schematic and layout of the STM32 Nucleo F466RE 

microcontroller board were prepared using the KiCad 4.0.7 software, a suite for electronic design 

automation (EDA). For electronic circuits and their conversion to PCB designs, facilitation of 

schematics design is easy with this software. An integrated environment for schematic capture and 
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PCB layout design is a common feature with it. It also has tools that enable the creation of a bill of 

materials, sketch designs, artworks, and 3D views of the PCB and its components, among others. 

Figure 3.9 shows the schematic design of the sensor node board. The circuit comprises the following 

functional blocks; the microcontroller, the L293D IC, a power supply circuit, and the sensor 

connectors (Power, Ground, and Data). Figure 3.10 shows the PCB outcome design in 2D view, 

putting into the actual fabrication result. 

 

 
 

Figure 3.9: The schematic design of one sensor node board 

 



38  

 
Figure 3.10: The PCB Design of the sensor node board 

3.4  System Energy Management 

The general power utilization includes the focal measurement sensor hub and the LoRaWAN 

transceiver module that transmits water quality data. The node operates at about 50mA at 5V working 

voltage per minute. These sensors expend large amounts of power. Many coordinated circuits, 

including the STM32 Nucleo board, do not adequately supply the power of such intensities. 

Interfacing these sensors and the Nucleo board power pins directly and constantly may harm it. An 

H-Bridge motor control circuit utilizing the L293D Motor Driver IC (Figure 3.11) to connect the 

sensors and the Nucleo board was deployed [56]. This also enables shutting down the sensor modules 

when the microcontroller has no data reading, which is equally set to sleep mode for 58 minutes 

within an hour of operation. 
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Figure 3.11: the L293D Motor Driver IC Pin-out Diagram 

3.5  Data and the Analytical Tool Determination 

 

In this section, the techniques discussed in the previous chapter were evaluated thoroughly using the 

Jupyter Notebook. In this open-source web application, one can create and share documents 

containing computer code (Python) and text elements (figures, equations, and other files). Since this 

thesis is based on the concept of reproducibility, links to the resources used in this section are as 

follows: 

 Anaconda was employed to set up the environment for all analytical experiments in this research. 

https://www.anaconda.com 

 Jupyter, installed in Anaconda.  Documents shared for experiments with embedded Python code, 

visualizations, and explanatory markdown were created here. 

https://jupyter.org 

 Python 3.7, the programming language used to build the codes used. 

https://www.python.org 

 Pandas, which was used for data retrieving and handling in Jupyter Notebook, is a data analysis 

library in Python. 

https://www.anaconda.com/
https://jupyter.org/
https://www.python.org/
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https://pandas.pydata.org 

 Matplotlib is used to make figures in Jupyter Notebook, a Python plotting library. 

https://matplotlib.org 

 Scikit-learn Python machine learning library was used in evaluation experiments. It is a free open 

source library, and it provides simple and effective tools for data analysis.  

https://scikit-learn.org 

 Package eif, for the extended isolation forest algorithm Python library. 

https://github.com/sahandha/eif 

 Package rrcf is a Python execution of the robust random cut forest algorithm for 

anomaly detection. 

https://github.com/kLabUM/rrcf 

First and foremost, a web-based application linked to a Google Cloud Protocol (GCP) Console-based 

InfluxdB database Virtual Machine (VM) was developed using the Dash Plotly framework to analyze 

and visualize the data collected in real-time. Properties of the dataset are shown in table 3.3. 

Table 3.3: Properties of the turbidity and water pH dataset 

 

 

 

 

 

 

A subset of the dataset, with 291 records, was extracted considering a region with graphically notable 

anomalies and used as the ground truth. A section of the dataset between 11th and 18th November 2020 

(7 days) was used. It was then manually examined, and all the outlier instances were identified.  Using 

File Name Data_Raw_Water.csv 

Location 
Nyeri-Kenya, Kamakwa, NYEWASCO Treatment 

Plant  

Interval Every 30 Minutes 

Number of Records 2568 

Columns time, turbidity, pH 

Data Range 
2020-11-04 11:00:31.822439+00:00 to 2021-01-04 

09:54:25.214766+00:00 

https://pandas.pydata.org/
https://matplotlib.org/
https://scikit-learn.org/
https://github.com/sahandha/eif
https://github.com/kLabUM/rrcf
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this subset, four anomaly detection evaluation experiments were performed for each parameter 

(turbidity and pH), first using the LOF algorithm, the IF and the EIF algorithms, and the RRCF 

algorithm. The experimental procedures are summarized in the flowchart of Figure 3.12 below. 

 

Figure 3.12: Experimental evaluation for the anomaly detection algorithms 

3.6  General System Design Overview 

There was the employment of a holistic, modular approach to creating this system. The organization 

of the developed and the deployed system is shown in Figure 3.13. The system is composed of the 

major sections of the sensors, the STM32 Nucleoboard microcontroller, and the LoRa Transceiver. 
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Figure 3.13: A Picture of the sensor node of the WQM System deployed at NYEWASCO 

The general operation of the system starts with reading sensor values and terminates with anomaly 

detection, as shown in Figure 3.14 below. 

 
Figure 3.14: General system operation flow chart 
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CHAPTER FOUR 

 

RESULTS AND DISCUSSION 

 

In this chapter, the results and the discussion of the developed system are presented as follows.  

i. Performance experiments on LoRa connectivity and range evaluation for wireless sensor 

networks in the rural area around the DeKUT. 

ii. The WQM sensor node was developed to collect values of two water parameters: pH and 

turbidity.  

iii. The obtained data was analyzed based on the selected machine learning algorithms: IF, EIF, 

LOF, and RRCF. 

4.1  LoRa Connectivity and Range Evaluation 

 

For this research, the mean RSSI was computed for each of the 10 test locations used.  At 100m away 

from the gateway, a mean strength of -102.7 dBm was recorded, while at 200m, the mean signal 

strength was -106.5 dBm. A complete record of the computed mean RSSI values for every test 

location is shown in Table 4.1. The best strength was realized at test location 3 (300m), while it is 

notable that the RSSI decreased (worsened) as the distance from the gateway increased.  

Table 4.1: The Mean RSSI (in dBm) for the Ten (10) Test Locations 

Test 

Location 

(m) 

100 200 300 400 500 600 700 800 900 1000 

Mean 

RSSI 

(dBm) 

-102.7 -106.5 -96.3 -100.5 -109.6 -108.2 -111.9 -112.2 -112.2 -113.1 

 

The box plot in Figure 4.1 provides a quick graphical examination of the RSSI for each of the ten 

(10) data sets. Outlier RSSIs were realized in test locations 3, 4, 8, and 9, and they are plotted as 
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individual points. The highest notable degree of dispersion (spread) and skewness in the RSSI is 

observed with test locations 1, 2, 4, and 5, whereas test location 8 depicts the contrary. 

 
Figure 4.1: The Received Strength Whisker and Box Plots for the 10 Test Locations 

Therefore, the use of LoRa technology that provided a low power long-range connectivity and good 

connectivity is proved to be an appropriate method compared to the current systems that mainly rely 

on WiFi technology. While LoRa technology covers up to a distance of up to 1km as demonstrated 

herein, WiFi coverage usually is up to 200km only. 

4.2  The WQM Sensor Network System Development 

 

This section presents the results of the WQM sensor network system developed in the vital area; 

sensor calibration. 

4.2.1 The pH Sensor 

 

For the three standard solutions, mean values of both the pH meter and our sensor probes are tabulated 

in Table 4.2. There were notable differences with less significant margins.   
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Table 4.2: pH validation results for the three standard solutions 

Standard Solution 4.0 7.0 9.0 

pHmeter Values(KEBS Calibrated) 4.11 7.12 9.14 

Probe Sensor Mean Values (n=15) 4.08 7.25 9.15 

The probe was ascertained to have been well-calibrated from a plot of Figure 4.2 that gave a 

correlation coefficient approximately equal to one. 

 
Figure 4.2: A plot of probe sensor mean values against the pH-meter mean values 

4.2.2 Turbidity Sensor 

 

During validation of the Gravity DFRobot Arduino sensor using a turbidimeter as a primary 

instrument, the results obtained are tabulated in table 4.3. 

Table 4.3: Turbidity Validation Results using the 7 Standard Solutions 

Standard Solution (NTU) 0 20 50 100 200 1000 4000 

Turbidimeter Values (NTU) 1.1 20.3 49.1 102.3 205.2 1008.7 4022.8 

Probe Sensor Mean Values 

(n=15) (NTU) 

0.9 20.2 48.8 101.5 202.5 1004.2 3000 

 

The probe was ascertained to have been well-calibrated from a plot of the results (figure 4.3) that 
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gave a correlation coefficient approximately equal to one. 

 
Figure 4.3: A plot of probe sensor mean values against the turbidimeter mean values 

These sensors: The DFRobot Gravity Arduino pH and Turbidity probes indeed provided precise 

measurements with desirable resolutions and accuracy. Being power-hungry was their drawback 

that was considerably addressed by the ‘sleep time’ methods using the motor drive IC. Their quick 

response time was also crucial in the achievement of this compensation and power use minimization 

procedures. 

4.3  Anomaly Detection and Machine Learning 

 

This section presents the results of parameter analysis towards the determination of an efficient 

contamination event detection algorithm. 

4.3.1  Performance Evaluation based on a Subset 

 

A. Turbidity Dataset 

 

Table 4.4 below shows a subsection of the 2,658 records of the water turbidity data in NTUs 

collected in 60 days. 
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Table 4.4: Turbidity Dataset Subsection 

 time turbidity 

0 2020-11-04 11:00:31.822439+00:00 21.063435 

1 2020-11-04 11:01:22.124333+00:00 20.868153 

2 2020-11-04 11:01:51.663062+00:00 20.584553 

3 2020-11-04 11:02:29.373718+00:00 21.185328 

4 2020-11-04 11:03:45.517010+00:00 21.063435 

... ... ... 

2653 2021-01-04 07:53:20.987423+00:00 10.611506 

2654 2021-01-04 08:23:37.035804+00:00 17.975997 

2655 2021-01-04 08:53:53.104009+00:00 17.734662 

2656 2021-01-04 09:24:09.578901+00:00 15.094176 

2657 2021-01-04 09:54:25.214766+00:00 14.611506 

2658 rows × two columns 

 

A plot of this turbidity data against time in figure 4.4 below shows several contextual anomalies. The 

subset under evaluation is indicated in the round corner rectangle. 

 

Figure 4.4: Turbidity Dataset for the Sixty (60) days 

I. The Local Outlier Factor Algorithm 

 

For the turbidity outliers, the algorithm detected a total of 75 outliers highlighted in Table 4.5. These 

anomalies are plotted as shown in Figure 4.4. The red stars are the 75 instances seen as anomalies in 
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the turbidity data with the number of neighbors 𝑘 =  100. It took the LOF algorithm 38.9 seconds to 

complete this process. Finding an optimal value of k was essential for detection performance. There 

were no false alarms as well as undetected outliers. 

Table 4.5: Turbidity outliers for the subset data as detected by the LOF algorithm 

time                           turbidity 

2020-11-12 21:57:18.752276+00:00 33.856159  

2020-11-12 22:27:34.814333+00:00 35.975997  

2020-11-12 22:57:50.858115+00:00 39.486692  

2020-11-12 23:28:06.931813+00:00 38.856159  

2020-11-12 23:58:22.991919+00:00 37.611506  

... ... ... 

2020-11-17 21:57:09.848484+00:00 50.094176  

2020-11-17 22:27:25.894124+00:00 59.856159  

2020-11-17 22:57:41.959856+00:00 77.975997  

2020-11-17 23:27:58.035168+00:00 88.856159  

2020-11-17 23:58:14.065228+00:00 100.975997  

75 rows × two columns 

 

 

Figure 4.5: A plot of LOF turbidity outliers for the subset data 

II. Isolation Forest and the Extended Isolation Forest Algorithms 

 

In these algorithms, the sub-sampling size ψ controlled the size of the training data. It was determined 

that the iForest demonstrated high precision and reliability when the ψ was gradually increased to the 
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desired value.  

After the required value of 𝜓 = 200 was achieved, there was no need to vary the ψ since it would 

unnecessarily increase memory consumption and time to process data. Moreover, it was observed 

that the number of trees t directly controlled the ensemble size.  It was also found that the ideal paths 

converged at 𝑡 =  50. When the tree training process was completed, several trees were returned, 

ready for the next evaluation stage. 

Anomalies are always assigned scores by the IF and the EIF algorithms. Over 120 points for turbidity 

data were marked as anomalies above 0.6, and in this case, it wasn't easy to find a feasible threshold 

for improvement. For instance, most anomalies were considered inliers if 0.7 was set as the threshold 

score. However, several normal points were still considered anomalies when 0.65 was established as 

a threshold. 

However, a plot of the top 60 instances (Figure 4.6) based on the score shows that standard EIF 

worked better than IF for turbidity data and found more anomalies with fewer false anomalies. This 

process took 3.66s for the IF algorithm and 3.99s for the EIF algorithm. 
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Figure 4.6: A plot of the IF and EIF turbidity outliers for the subset data 

III. The Robust Random Cut Forest Algorithm 

 

It was not easy to find a feasible threshold to split the outliers since some outliers were marked with 

low anomaly scores (for example, instances at the beginning of the dataset). In contrast, some regular 

points are marked with high anomaly scores. Therefore the top 67 outlier records having the highest 

scores were listed in Table 4.6, taking 7.1 seconds. These results were plotted as shown in Figure 4.7. 
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This algorithm did not detect a significant number of point outliers detected by the LOF algorithm. 

False alarms are also contained in this list: For example, for turbidity record 19.856159 NTU [2020-

11-11 18:12:35.713854+00:00], whose value is almost equal to the next value (only 30 minutes apart) 

is marked as an outlier. 

Table 4.6: Turbidity outliers as detected by the RRCF algorithm for the subset data 

time                            turbidity  

2020-11-11 18:12:35.713854+00:00 19.856159  

2020-11-12 09:20:37.353014+00:00 8.856159  

2020-11-12 17:55:10.311827+00:00 10.734662  

2020-11-12 21:27:02.699108+00:00 22.975997  

2020-11-12 21:57:18.752276+00:00 33.856159  

 ... ... 

2020-11-17 19:56:05.608199+00:00 25.094176  

2020-11-17 20:26:21.676559+00:00 39.975997  

2020-11-17 20:56:37.735037+00:00 46.210696  

2020-11-17 22:57:41.959856+00:00 77.975997  

2020-11-17 23:58:14.065228+00:00 100.975997  

67 rows × three columns 

 
Figure 4.7: A plot of RRCF turbidity outliers for the subset data 
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B. pH Dataset 

 

Table 4.7 below shows a subsection of the 2,658 records of the pH dataset that were collected in 60 

days. 

Table 4.7 pH Dataset Subsection 

 time pH 

0 2020-11-04 11:00:31.822439+00:00 7.34 

1 2020-11-04 11:01:22.124333+00:00 7.33 

2 2020-11-04 11:01:51.663062+00:00 7.32 

3 2020-11-04 11:02:29.373718+00:00 7.33 

4 2020-11-04 11:03:45.517010+00:00 7.32 

... ... ... 

2653 2021-01-04 07:53:20.987423+00:00 7.35 

2654 2021-01-04 08:23:37.035804+00:00 7.35 

2655 2021-01-04 08:53:53.104009+00:00 7.34 

2656 2021-01-04 09:24:09.578901+00:00 7.36 

2657 2021-01-04 09:54:25.214766+00:00 7.36 

2658 rows × two columns 

 

Similarly, the pH data in figure 4.8 below clearly shows that several instances are far from the other, 

which indicates point anomalies in the collected turbidity data. However, the range of variation does 

not portray a significant gap. The subset that was considered as the test data is shown in the round 

corner box. 

 

Figure 4.8: pH Dataset for the Sixty (60) days 
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I. The Local Outlier Factor Algorithm 

 

The local outlier factor algorithm was used to detect the water pH outliers of the selected subset 

considered. In Figure 4.9, the red stars diagram shows the 63 instances detected as anomalies in the 

pH data using the number of neighbors, 𝑘 =  100. The algorithm took 21 milliseconds to determine 

these anomalies. There were no false alarms as well as undetected outliers. Choosing an optimal k 

remained to be an essential factor for detection performance. For values of k too small or huge, the 

errors were prominent due to under-fitting. 

Table 4.8: pH outliers as detected by the LOF algorithm on the subset data 

time                            pH 

2020-11-11 01:11:34.389403+00:00 7.39  

2020-11-11 03:42:54.674932+00:00 7.36  

2020-11-11 18:12:35.713854+00:00 7.40  

2020-11-11 23:15:16.261228+00:00 7.36  

2020-11-12 00:15:48.373825+00:00 7.36  

... ... ... 

2020-11-17 05:17:04.412038+00:00 7.37  

2020-11-17 06:47:52.593118+00:00 7.34  

2020-11-17 14:53:25.015789+00:00 7.36  

2020-11-17 18:25:17.425846+00:00 7.36  

2020-11-17 22:57:41.959856+00:00 7.34  

63 rows × two columns 
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Figure 4.9: A plot of LOF pH outliers on the subset data 

II. Isolation Forest and the Extended Isolation Forest Algorithms 

 

Similar procedures as those in the turbidity data were adopted. It was also tough to find a feasible 

threshold for the improvement of anomaly detection. However, a plot of top 60 instances based on 

the score in (Figure 4.10) shows that standard IF worked better than EIF for turbidity data and found 

more anomalies with fewer false anomalies, a twist of what was achieved for the turbidity data. This 

process took 1.69s for the IF algorithm and 1.89s for the EIF algorithm. 

 



55  

 
Figure 4.10: A plot of IF and EIF pH outliers on the subset data 

III. The Robust Random Cut Forest Algorithm 

 

The pH anomalies detected by the RRCF are shown in Table 4.10 and plotted in Figure 4.11. A 

feasible threshold to split the outliers was hard to determine and therefore the top 61 records with the 

highest outlier scores were identified. A significant number of point outliers from the beginning of 

the subset detected by the LOF algorithm were not detected, such as the pH record 7.39 [2020-11-11 

01:11:34.389403+00:00]. The anomaly detection process took 2.51 seconds.  
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Table 4.9: pH outliers as detected by the RRCF algorithm on the subset data 

time                            pH 

2020-11-11 18:12:35.713854+00:00 7.40  

2020-11-11 23:15:16.261228+00:00 7.36  

2020-11-12 00:15:48.373825+00:00 7.36  

2020-11-12 00:46:04.433087+00:00 7.39  

2020-11-12 01:16:20.473824+00:00 7.36  

... ... ... ... 

2020-11-17 05:17:04.412038+00:00 7.37  

2020-11-17 06:47:52.593118+00:00 7.34  

2020-11-17 14:53:25.015789+00:00 7.36  

2020-11-17 18:25:17.425846+00:00 7.36  

2020-11-17 22:57:41.959856+00:00 7.34  

61 rows × three columns 

 
Figure 4.11: A plot of RRCF pH anomalies and their outlier scores on the subset data 

Based on the ground truth subset, the LOF algorithm successfully detects all the 63 anomalies in the 

time series water pH subset data and all the 75 anomalies in the time series turbidity data, as 

summarized in table 4.10 and table 4.11. The RRCF algorithm suffers from 19 false abnormalities as 

well as missing 27 outliers in the turbidity subset. The case is similar for two undetected point 

anomalies in the pH subset data. Finding a score threshold for the IF and the EIF algorithms was 
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complicated to determine a feasible number of anomalies. However, from the plots obtained, they 

suffer false anomalies and undetected anomalies. Additionally, the LOF algorithm was the fastest in 

detecting anomalies for both turbidity and pH data compared to the IF, EIF, and RRCF algorithms. 

While the LOF algorithm took only milliseconds, the IF, EIF, and RRCF algorithms consumed a 

second and more. 

Table 4.10: pH subset data algorithms performance evaluation 

Algorithm Anomalies False 

Anomalies 

Undetected 

Anomalies 

Execution 

Time 

LOF 63 0 0 21 ms 

IF - - - 1.88s 

EIF - - - 1.25s 

RRCF 61 0 2 2.51s 

 

Table 4.11: Turbidity subset data algorithms performance evaluation 

Algorithm Anomalies False 

Anomalies 

Undetected 

Anomalies 

Execution 

Time 

LOF 75 0 0 38.9 ms 

IF - - - 3.66s 

EIF - - - 3.91s 

RRCF 67 19 27 7.1s 

 

4.3.2 Performance Evaluation Based on the overall Datasets 

 

In this section, similar procedures as those employed in Section 4.4.1 were adopted for the whole 

dataset except for input parameters as elaborated below. 

A. Turbidity Dataset 

 

I. The Local Outlier Factor Algorithm 

 

The turbidity dataset was subjected to the LOF algorithm with the nearest number of neighbors 
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parameter value 𝑘 = 800, found to be appropriate. The algorithm took 1.55 seconds to determine a 

total of 278 anomalies plotted (red asterisks) in figure 4.12 below. Physical observation guarantees 

that the LOF algorithm successfully identifies a feasible number of contextual anomalies in the 

dataset. 

 

Figure 4.12: A plot of LOF turbidity anomalies on the whole dataset 

II. The Isolation Forest and the Standard Isolation Forest Algorithms 

In this procedure, the sub-sampling size of 𝜓=200 was also used for both algorithms, and there was 

no need to vary it more to unnecessarily increase memory consumption and the time taken to process 

data. Moreover, it was observed that the number of trees t directly controlled the ensemble size and 

the ideal paths converged at 𝑡 =  50 as well. However, determining top anomalies was impossible as 

well. A plot of top 270 instances based on the score (Figure 4.13) shows that standard EIF worked 

better than IF for turbidity data and found more anomalies with fewer false anomalies. This process 
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took 17.6s for the IF algorithm and 22.7s for the EIF algorithm. 

 

 
Figure 4.13: A plot of IF and EIF turbidity anomalies on the whole dataset 

III. The Robust Random Cut Forest Algorithm 

 

It was challenging to find a reasonable threshold to filter out anomalies since some outliers are marked 

with low anomaly scores (for example, instances at the beginning of the dataset). In contrast, some 

expected points are marked with high anomaly scores. The top 271 outlier records having the highest 

scores were found, consuming 3mins and 54seconds. These results were plotted as shown in Figure 

4.14. A significant number of false outliers can be physically observed. 
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Figure 4.14: A plot of RRCF turbidity anomalies and their outlier scores on the whole dataset 

B. pH Dataset 

 

I. The Local Outlier Factor Algorithm 

 

The pH dataset was subjected to the LOF algorithm with the nearest number of the neighbors 

parameter value, 𝑘 = 800 found to be appropriate. The algorithm took 2.95 s to determine a total of 

927 anomalies plotted (red asterisks) in figure 4.15 below. Physical observation guarantees that the 

LOF algorithm successfully identifies a feasible number of contextual anomalies in the dataset. 



61  

 

Figure 4.15: A plot of LOF pH anomalies on the whole dataset 

II. The Isolation Forest and the Extended Isolation Forest 

A plot of top 600 instances based on the score (Figure 4.16) shows that standard EIF worked better 

than IF for turbidity data and found more anomalies with fewer false anomalies. This process took 

18.2s for the IF algorithm and 17.2s for the EIF algorithm. 
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Figure 4.16: A plot of IF and EIF pH anomalies on the whole dataset 

III. The Robust Random Cut Forest 

 

The top 923 outlier records having the highest scores were found, consuming 4mins and 19seconds. 

These results were plotted as shown in Figure 4.17. A physical examination of its performance is 

recommendable. 
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Figure 4.17: A plot of RRCF pH anomalies and their outlier scores on the whole dataset 

 

Table 4.13 below highlights a summary of some of the evaluational factors for the four anomaly 

detection algorithms based on the whole dataset. The LOF algorithm emerged to be the fastest to 

process both datasets, while the RRCF took the longest time. It was easier to use and understand the 

LOF algorithm than the IF, EIF, and RRCF algorithms. 

Table 4.12: pH and Turbidity whole datasets algorithms evaluation 

Algorithm Anomalies Execution Time 

pH Turbidity pH Turbidity 

LOF 927 278 728 ms 1.55 s 

IF - - 18.2 s 17.6s 

EIF - - 17.2 s 22.7s 

RRCF 923 271 4min 19s 3min 54s 
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CHAPTER FIVE 

 

 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1  Conclusions 

 

This research presents the development of a low-cost sensor node that can be used to perform 

automated raw water quality monitoring in a treatment plant.  

First and foremost, there were LoRa technology experiments on the range of coverage and 

connectivity using the RSSI parameter of the transceiver signals in the DeKUT main campus rural 

area.  The best RSSI was realized in places near the gateway (100m away), a mean strength of -102.7 

dBm, while the least RSSI was recorded at the furthest point of testing (1 km), whose mean signal 

strength was -113.7 dBm. Within a range of 1km, LoRa technology can satisfactorily be employed 

for data collection with WSNs due to good connectivity. 

The developed sensor node contained two water quality sensor probes used to monitor water quality. 

This included the DFRobot Gravity Arduino turbidity sensor and the DFRobot's Gravity Analog pH 

sensor. The developed system is power-saving lightweight, and it can comfortably transmit data 

remotely, using LoRa technology. 

Besides, this research presented a comprehensive evaluation of four different machine learning 

anomaly detection algorithms on two parameters from a water sensor node deployed at the 

NYEWASCO water treatment plant at the raw water section. A subset of 291 records extracted from 

the primary dataset of 2658 records was analyzed for both parameters. The LOF algorithm emerged 

superior to the IF, the EIF, and the RRCF algorithms in contamination event detection and hence a 

practical water contamination detection algorithm that can trigger alarms to alert the users when 

contamination is detected.  

The framework is more suitable for large-scale implementation to collect and analyze raw water 

quality data in water supply firms and water authorities. 
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5.2  Recommendations 

 

Further work can be done on the LoRa technology connectivity and range evaluation studies to 

develop a wireless propagation model in a rural setup of DeKUT. This can incorporate factors like 

free space attenuation, shadowing, reflection and transmission, and diffraction.  

The developed water quality management system can be installed in multiple locations in water 

distribution networks to gather water quality data and classify sensor responses in practical 

deployments. Water is a vast network of related bodies such as rivers, lakes, swamps, dams, and other 

sources. If these linked parts contain different levels of pollution, assessing water quality may be a 

complicated endeavor. 

Moreover, more water quality parameters can be incorporated into the developed system, such as 

temperature, making it a robust water quality parameter monitoring. Besides turbidity and water pH, 

other water quality parameters include total dissolved solids, oxygen reduction potential, electrical 

conductivity, dissolved oxygen, free residual chlorine, nitrates, to mention just but a few. 

Additionally, further studies on the productivity of anomaly detection algorithms given several types 

of contaminants present in water can be done. Marginal risk assessment and the ability of algorithms 

for anomaly detections to accurately identify contaminants can be examined.
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APPENDICES 

 

Appendix I – Anomaly Detection Algorithms 

 

Algorithm 1: iForest(𝑋, 𝑡, 𝜓) [53] 

Inputs: X - input data, t - number of trees, ψ - subsampling size 

Output: a set of t iTrees 

1: Initialize Forest 

2: set height limit  𝑙 =  𝑐𝑒𝑖𝑙𝑖𝑛𝑔(𝑙𝑜𝑔2 𝜓) 

3: for 𝑖 =  1 to t do 

4:  𝑋′  ←  𝑠𝑎𝑚𝑝𝑙𝑒(𝑋, 𝜓) 

5:  𝐹𝑜𝑟𝑒𝑠𝑡 ←  𝐹𝑜𝑟𝑒𝑠𝑡 ∪  𝑖𝑇𝑟𝑒𝑒(𝑋′, 0, 𝑙) 

6: end for 

7: return Forest 

Algorithm 2: iTree(𝑋, 𝑒, 𝑙) [53] 

Inputs: X - input data, e - current tree height, l – height limit 

Output: an iTree 

1: if 𝑒 ≥  𝑙 or |𝑋|  ≤  1 then 

2: return 𝑒𝑥𝑁𝑜𝑑𝑒{𝑆𝑖𝑧𝑒 ←  |𝑋|} 

3: else 

4: let Q be a list of attributes in X 

5: randomly select an attribute 𝑞 ∈  𝑄 

6: randomly select a split point p from max and min values of attribute q in X 

7: 𝑋𝑙  ←  𝑓𝑖𝑙𝑡𝑒𝑟(𝑋, 𝑞 <  𝑝) 

8: 𝑋𝑟  ←  𝑓𝑖𝑙𝑡𝑒𝑟(𝑋, 𝑞 ≥  𝑝) 

9: return 𝑖𝑛𝑁𝑜𝑑𝑒{𝐿𝑒𝑓𝑡 ←  𝑖𝑇 𝑟𝑒𝑒(𝑋𝑙, 𝑒 +  1, 𝑙), 

   𝑅𝑖𝑔ℎ𝑡 ←  𝑖𝑇 𝑟𝑒𝑒(𝑋𝑟, 𝑒 +  1, 𝑙), 

   𝑆𝑝𝑙𝑖𝑡𝐴𝑡𝑡 ←  𝑞, 

   𝑆𝑝𝑙𝑖𝑡𝑉 𝑉𝑎𝑙𝑢𝑒 ←  𝑝} 

 13: end if 

Algorithm 3: PathLength(𝑥, 𝑇, 𝑒) [53] 

Inputs: x - an instance, T - an iTree, e - current path length; initialized to zero when first called 
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Output: path length of x 

1: if T is an external node then 

2:  return 𝑒 +  𝑐(𝑇. 𝑠𝑖𝑧𝑒) {𝑐(. ) is defined in Equation 1} 

3: end if 

4: 𝑎 ←  𝑇. 𝑠𝑝𝑙𝑖𝑡𝐴𝑡𝑡 

5: if 𝑥𝑎 <  𝑇. 𝑠𝑝𝑙𝑖𝑡𝑉 𝑎𝑙𝑢𝑒 then 

6:  return 𝑃𝑎𝑡ℎ𝐿𝑒𝑛𝑔𝑡ℎ(𝑥, 𝑇. 𝑙𝑒𝑓𝑡, 𝑒 +  1) 

7: else {𝑥𝑎 ≥  𝑇. 𝑠𝑝𝑙𝑖𝑡𝑉𝑎𝑙𝑢𝑒} 

8:  return 𝑃𝑎𝑡ℎ𝐿𝑒𝑛𝑔𝑡ℎ(𝑥, 𝑇. 𝑟𝑖𝑔ℎ𝑡, 𝑒 +  1) 

9: end if 

Algorithm 4:  𝑖𝑇𝑟𝑒𝑒(𝑋, 𝑒, 𝑙) [54] 

Input: X - input data, e - current tree height, l -height limit 

Output: an iTree 

1: if e ≥ l or |X| ≤ 1 then 

2: return exNode {Size ← |X|} 

3: else 

4: randomly select a normal vector �⃗�  ∈  𝐼𝑅|𝑋| by drawing each coordinate of �⃗�  from a standard 

Gaussian distribution. 

5: randomly select an intercept point 𝑝  ∈  𝐼𝑅|𝑋| in the range of X 

6: set coordinates of �⃗�  to zero according to extension level 

7:  𝑋𝑙  ←  𝑓𝑖𝑙𝑡𝑒𝑟(𝑋, (𝑋 − ~𝑝)  ·  ~𝑛 ≤  0) 

8:  𝑋𝑟 ←  𝑓𝑖𝑙𝑡𝑒𝑟(𝑋, (𝑋 − ~𝑝)  ·  ~𝑛 >  0) 

9:  return inNode { 𝐿𝑒𝑓𝑡 ←  𝑖𝑇 𝑟𝑒𝑒(𝑋𝑙, 𝑒 +  1, 𝑙), 

 𝑅𝑖𝑔ℎ𝑡 ←  𝑖𝑇𝑟𝑒𝑒(𝑋𝑟, 𝑒 +  1, 𝑙), 

 𝑁𝑜𝑟𝑚𝑎𝑙 ←  �⃗� ,  

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 ←  𝑝 } 

10: end if 

Algorithm 5: ForgetPoint [55] 

1: Node υ in the tree where p is isolated in T is found. 

2:  u is let to be the sibling of υ. The parent of υ (and of u) is deleted and replaced with u (i.e., the 

path from u to the root is short-circuited). 
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3: All bounding boxes starting from u’s (new) parent upwards are updated. However, this state is 

not necessary for deletions. 

4: The modified tree T is returned. 

Algorithm 6: InsertPoint [55] 

1: For a set of points 𝑆′ and a tree𝑇(𝑆′), a new point p and produce tree 𝑇′(𝑆′ ∪  {𝑝}) is inserted. 

2: If 𝑆′ = ∅ then a node containing the single node p is returned.  

3: Otherwise 𝑆′ has a bounding box 𝐵(𝑆′) = [𝑥1
𝑙 ,  𝑥1

ℎ]  ×  [𝑥2
𝑙 ,  𝑥2

ℎ]  × . . . [𝑥𝑑
𝑙 ,  𝑥𝑑

ℎ]. Let 𝑥𝑖
𝑙 ≤ 𝑥𝑖

ℎ for 

all 𝑖. 

4: For all 𝑖 let �̂�𝑖
𝑙 = min {𝑝𝑖 , 𝑥𝑖

𝑙} and �̂�𝑖
ℎ = max { 𝑥𝑖

ℎ, 𝑝𝑖} 

5: A random number 𝑟 ∈  [0, ∑ (𝑥𝑖
ℎ − 𝑥𝑖

𝑙
𝑖 )] is chosen. 

6: This r corresponds to a specific choice of a cut in the construction of 𝑅𝑅𝐶𝐹 (𝑆′ ∪  {𝑝}). 

For instance, compute arg min {𝑗| ∑ (𝑥𝑖
ℎ − 𝑥𝑖

𝑙) ≥ 𝑟
𝑗
𝑖 } and the cut corresponds to choosing 

�̂�𝑗
𝑙 + ∑ (𝑥𝑖

ℎ − 𝑥𝑖
𝑙) − 𝑟

𝑗
𝑖=1 } in dimension 𝑗. 

7: If this cut separates 𝑆′ and p (i.e., is not in the interval [𝑥𝑗
𝑙  , 𝑥𝑗

ℎ ]) then this is used as the first 

cut for 𝑇′(𝑆′ ∪  {𝑝}). A node is created whereby one side of the cut is p and the other side of the 

node is the tree 𝑇(𝑆′). 

8: If this cut does not separate 𝑆′ and p then the cut thrown away! The same 

dimension is chosen as 𝑇(𝑆′) in 𝑇′(𝑆′ ∪  {𝑝}) and the exact same value of the cut chosen by 

𝑇(𝑆′) and a split performed. The point p goes to one of the sides with subset 𝑆′′. This procedure is 

repeated with a smaller bounding box 𝐵(𝑆′′) 𝑜𝑓 𝑆′′. For the other side, the same subtree as in 𝑇(𝑆′) 

is used. 

9: The bounding box of 𝑇′ is updated in either cases 
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Appendix III – Permission and Approval Letter for Sensor Node Deployment at 

NYEWASCO Treatment Plant 

 

 
 


